A SYSTEMIC RADIOMETRIC CALIBRATION APPROACH FOR LDCM AND THE LANDSAT ARCHIVE — An Update

LDCM Science Team Meeting
June 12-14, 2007
Oregon State University

Dennis Helder, EE & CS Dept, SDSU

Dave Aaron, Physics Dept, SDSU

Jim Dewald, SDSU IP Lab

Tim Ruggles, SDSU IP Lab

Chunsun Zhang, SDSU GISc Center

A SYSTEMIC RADIOMETRIC CALIBRATION APPROACH FOR LDCM AND THE LANDSAT ARCHIVE

- Consistent calibration of the Landsat archive through use of pseudo-invariant sites
- Techniques for relative gain calibration/correction of large linear arrays
- Vicarious calibration of LDCM and Landsat
 TM/ETM+ instruments

Techniques for relative gain calibration/correction of large linear arrays

- Relative Gain—whiskbroom to pushbroom scanner issue:
 - Landsat 4/5 TM—16 detectors/refl. band + 4 thermal det. → 100 det.
 - Landsat 7 ETM+ -- add the pan band & 30m thermal band → 136 detectors
 - Advanced Land Imager 320 multispectral detectors/sca x 4 sca's/band x
 9 bands + 960 pan detectors/sca x 4sca's/band = 15,360 detectors
 - LDCM ≥ 57,000 detectors!

Relative gain estimation is a critical element for LDCM!

- Methods to estimate Relative Gain
 - Image uniform fields
 - Statistical based methods
 - Lifetime data sets
 - Individual scenes
 - 90° yaw maneuvers

Relative Gain Estimation Techniques

- Lifetime Histogram Statistics Method
 - Over 'long' periods of time each detector observes the same data statistically.
 - Ratios of detector means or standard deviations can be used to estimate relative gains.
- Individual Scene Statistics Method
 - Odd/Even detector striping most prevalent due to focal plane design
 - Develop an objective function measuring odd/even striping
 - Use least squares approach to minimize objective function through estimation optimal relative gains.

Yaw Data Sets

- Perfect' 90° yaw maneuver allows each detector to observe same point on the earth's surface. Deterministic estimate of relative gain is possible.
- Near 90° yaw maneuver provides very uniform scene for relative gain estimate, but not perfect.
- Use these data sets with statistical algorithms to develop a more accurate estimate of relative gains.

Theory of New Method

- Adjacent detectors see nearly the same data.
- Difference between adjacent detectors should be small.
- Develop function to minimize difference between adjacent detectors.

Symbols

- Qŋ pixel value at point i, j (row, column).
- Q_{ij} pixel value before relative gain correction (original value).
- r_i relative gain for detector (column) j.
- $\mathbf{Q}_{ij} = \mathbf{r}_j \mathbf{Q}_{ij}$.
- F(Q,r,i,j) objective minimization function.

Setup Minimization Function F(Q,r,i,j)

Minimize difference between columns 1 and 2.

$$F(Q,r,i,1) = (Q_{11} - Q_{12}) + (Q_{21} - Q_{22}) + \dots + (Q_{n1} - Q_{n2})$$

Square differences to ensure positive numbers.

$$F^{2}(Q, r, i, 1) = (Q_{11} - Q_{12})^{2} + (Q_{21} - Q_{22})^{2} + \dots + (Q_{n1} - Q_{n2})^{2}$$

$$F^{2}(Q,r,i,1) = (Q_{11} - Q_{12})^{2} + (Q_{21} - Q_{22})^{2} + \dots + (Q_{n1} - Q_{n2})^{2}$$

Expanding the Quadratics

$$Q_{11}^2 - 2Q_{11}Q_{12} + Q_{12}^2 + Q_{21}^2 - 2Q_{21}Q_{22} + Q_{22}^2 + \dots + Q_{n1}^2 - 2Q_{n1}Q_{n2} + Q_{n2}^2$$

Express as a Sum of Products

$$\sum_{i} Q_{i1}^{2} + \sum_{i} Q_{i2}^{2} - 2 \sum_{i} Q_{i1} Q_{i2}$$

Or in General

$$F^{2}(Q,r,i,j) = \sum_{i} Q_{ij}^{2} + \sum_{i} Q_{ij+1}^{2} - 2\sum_{i} Q_{ij}Q_{ij+1}$$

Recall

$$Q_{ij} = r_j Q_{ij}^{o}$$

Then Substituting

$$F^{2}(Q, r, i, j) = r_{j}^{2} \sum_{i} Q_{ij}^{o^{2}} + r_{j+1}^{2} \sum_{i} Q_{ij+1}^{o^{2}} - 2r_{j}r_{j+1} \sum_{i} Q_{ij}^{o} Q_{ij+1}^{o}$$

We now have a minimization function containing each detector relative gain.

From the above equation, we can see that each \mathbf{r}_j appears in $F^2(Q,r,i,j-1)$ and $F^2(Q,r,i,j)$

So each r_j appears in exactly 2 equations of the minimization function, except for r_l and r_m which only appear in the first and last equations, respectively.

To minimize $F^{2}(Q, r, i, j)$ we differentiate it with respect to r_{j} .

$$\frac{\delta F^{2}(Q, r, i, j)}{\delta r_{j}} = 2r_{j} \sum_{i} Q_{ij}^{o^{2}} - 2r_{j+1} \sum_{i} Q_{ij}^{o} Q_{ij+1}^{o}$$

By setting this equal to zero we obtain.

$$r_{j} \sum_{i} Q_{ij}^{o^{2}} - r_{j+1} \sum_{i} Q_{ij}^{o} Q_{ij+1}^{o} = 0$$

We have a system of linear equations to solve for Γ_j .

Putting

$$\begin{split} r_j \sum_i Q_{ij}^{o^2} - r_{j+1} \sum_i Q_{ij}^{o} Q_{ij+1}^{o} = 0 \\ &\text{in a matrix.} \end{split}$$

$$\begin{bmatrix} \sum_{i} Q_{i1}^{o^{2}} & -\sum_{i} Q_{i1}^{o} Q_{i2}^{o} & 0 & 0 & \cdots & 0 \\ 0 & \sum_{i} Q_{i2}^{o^{2}} & -\sum_{i} Q_{i2}^{o} Q_{i3}^{o} & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & \sum_{i} Q_{im-1}^{o^{2}} & -\sum_{i} Q_{im-1}^{o} Q_{im}^{o} \end{bmatrix} \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{m-1} \\ r_{m} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ m \end{bmatrix}$$

We can now solve for each r_j .

The last row of ones forces the mean of \mathbf{r}_j to be equal to 1. m = the number of columns (detectors) in the image.

Results

Correction Factors Using Image Statistics Band 1p

Detector Number

Corrected Image

Band 1p

Corrected Image

Data Range 263-384

Data Range 283-386

1st 320 Lines

EO12004262105030_HGS — A YAW IMAGE SCA 1 Band 1p

Band 1p Cont.

EO12004262105030_HGS Rel Gains Applied to EO12001059230136_PF1

SCA 1 Band 1p

Band 1p Cont.

Data Range: 263-384

Data Range: 278-381

Even and Odd Detectors normalized by equalizing total means.

EO12002329141606_SGS

SCA 1 Band 1p

First 320 Lines of Corrected Image (Odd)

A 2nd example of a yaw image... Yaw angle = 88.5°

Band 1p Cont.

EO12002329141606_SGS Rel Gains Applied to EO12001059230136_PF1

SCA 1 Band 1p

Band 1p Cont.

Data Range: 263-384

Data Range: 279-382

Even and Odd Detectors normalized by equalizing total means.

EO12004262105030_HGS

EO12002329141606_SGS

SCA 1 Comparison

EO12004262105030_	HGS	SCA 1
-------------------	-----	-------

Band	1p	1	2	3	4	4 p
Odd Ang. (deg)	88.2632	87.9966	88.8023	88.9465	88.9465	88.9322
Odd Overlap (%)	0.9385	0.9289	0.9578	0.9629	0.9629	0.9624
Even Ang. (deg)	87.9828	87.9966	88.418	88.65	88.65	88.6034
Even overlap (%)	0.9284	0.9289	0.9441	0.9524	0.9524	0.9507

Band	1p	1	2	3	4	4p
Odd Ang. (deg)	88.54839	88.98058	89.16974	89.08163	88.9604	88.99361
Odd Overlap (%)	0.9487	0.9641	0.9708	0.9677	0.9634	0.9646
Even Ang. (deg)	88.43023	88.64094	89.10714	88.75984	88.69835	88.54317
Even Overlap (%)	0.9445	0.952	0.9686	0.9563	0.9541	0.9485

EO12001227182254_AGS_01

Yaw Image-based Correction

Lifetime Histogram Statistics Correction

Comparison of Relative Gain Estimates

Summary Points

- Lifetime statistics provide good information of overall relative gain trends within an array
 - Assumes relative gains only vary slowly with time
 - May require 'fine tuning' to optimize estimates
- Individual scene statistics approach is optimal with regard to visual removal of striping
 - Addresses problem of small, short term relative gain drift
 - Needs to be adapted to longer duration data sets
 - May be excellent for use with yaw images
- Use of imagery collected during 90° yaw maneuvers can provide excellent information on detector gains
 - Need to image uniform surfaces
 - Should be executed on a regular (monthly to quarterly?) basis
 - Can be done with minimal impact to normal imaging by considering polar regions and possibly deserts.